extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1C22≀C2 = (C2×C4)⋊Dic6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 192 | | C6.1C2^2wrC2 | 192,215 |
C6.2C22≀C2 = (C2×C4)⋊9D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.2C2^2wrC2 | 192,224 |
C6.3C22≀C2 = D6⋊C4⋊C4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.3C2^2wrC2 | 192,227 |
C6.4C22≀C2 = (C2×C12)⋊5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.4C2^2wrC2 | 192,230 |
C6.5C22≀C2 = C6.C22≀C2 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.5C2^2wrC2 | 192,231 |
C6.6C22≀C2 = (C22×S3)⋊Q8 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.6C2^2wrC2 | 192,232 |
C6.7C22≀C2 = D12.31D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | | C6.7C2^2wrC2 | 192,290 |
C6.8C22≀C2 = D12⋊13D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | | C6.8C2^2wrC2 | 192,291 |
C6.9C22≀C2 = D12.32D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.9C2^2wrC2 | 192,292 |
C6.10C22≀C2 = D12⋊14D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.10C2^2wrC2 | 192,293 |
C6.11C22≀C2 = Dic6⋊14D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.11C2^2wrC2 | 192,297 |
C6.12C22≀C2 = Dic6.32D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.12C2^2wrC2 | 192,298 |
C6.13C22≀C2 = C23⋊D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.13C2^2wrC2 | 192,300 |
C6.14C22≀C2 = C23.5D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 8- | C6.14C2^2wrC2 | 192,301 |
C6.15C22≀C2 = M4(2)⋊D6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 8- | C6.15C2^2wrC2 | 192,305 |
C6.16C22≀C2 = D12⋊1D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.16C2^2wrC2 | 192,306 |
C6.17C22≀C2 = D12.4D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 8- | C6.17C2^2wrC2 | 192,311 |
C6.18C22≀C2 = D12.5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.18C2^2wrC2 | 192,312 |
C6.19C22≀C2 = D4⋊D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | | C6.19C2^2wrC2 | 192,332 |
C6.20C22≀C2 = D6⋊5SD16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | | C6.20C2^2wrC2 | 192,335 |
C6.21C22≀C2 = D4⋊3D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.21C2^2wrC2 | 192,340 |
C6.22C22≀C2 = D4.D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.22C2^2wrC2 | 192,342 |
C6.23C22≀C2 = Q8⋊3D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.23C2^2wrC2 | 192,365 |
C6.24C22≀C2 = Q8.11D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.24C2^2wrC2 | 192,367 |
C6.25C22≀C2 = D6⋊Q16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.25C2^2wrC2 | 192,368 |
C6.26C22≀C2 = Q8⋊4D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.26C2^2wrC2 | 192,369 |
C6.27C22≀C2 = Q8⋊5D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 24 | 4+ | C6.27C2^2wrC2 | 192,381 |
C6.28C22≀C2 = C42⋊5D6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.28C2^2wrC2 | 192,384 |
C6.29C22≀C2 = Q8.14D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 4- | C6.29C2^2wrC2 | 192,385 |
C6.30C22≀C2 = D4.10D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.30C2^2wrC2 | 192,386 |
C6.31C22≀C2 = C24.58D6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.31C2^2wrC2 | 192,509 |
C6.32C22≀C2 = C24.60D6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.32C2^2wrC2 | 192,517 |
C6.33C22≀C2 = C23⋊3D12 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.33C2^2wrC2 | 192,519 |
C6.34C22≀C2 = C24.27D6 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.34C2^2wrC2 | 192,520 |
C6.35C22≀C2 = C24.57D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.35C2^2wrC2 | 192,505 |
C6.36C22≀C2 = C23⋊2Dic6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.36C2^2wrC2 | 192,506 |
C6.37C22≀C2 = C24.59D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.37C2^2wrC2 | 192,514 |
C6.38C22≀C2 = C24.23D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.38C2^2wrC2 | 192,515 |
C6.39C22≀C2 = C24.25D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.39C2^2wrC2 | 192,518 |
C6.40C22≀C2 = (C2×Dic3)⋊Q8 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.40C2^2wrC2 | 192,538 |
C6.41C22≀C2 = D6⋊C4⋊6C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.41C2^2wrC2 | 192,548 |
C6.42C22≀C2 = (C2×C4)⋊3D12 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.42C2^2wrC2 | 192,550 |
C6.43C22≀C2 = C24⋊6D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 24 | 4 | C6.43C2^2wrC2 | 192,591 |
C6.44C22≀C2 = D12⋊16D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.44C2^2wrC2 | 192,595 |
C6.45C22≀C2 = D12⋊17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.45C2^2wrC2 | 192,596 |
C6.46C22≀C2 = Dic6⋊17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.46C2^2wrC2 | 192,599 |
C6.47C22≀C2 = D12.36D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.47C2^2wrC2 | 192,605 |
C6.48C22≀C2 = D12.37D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.48C2^2wrC2 | 192,606 |
C6.49C22≀C2 = Dic6.37D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.49C2^2wrC2 | 192,609 |
C6.50C22≀C2 = C22⋊C4⋊D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.50C2^2wrC2 | 192,612 |
C6.51C22≀C2 = C42⋊7D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.51C2^2wrC2 | 192,620 |
C6.52C22≀C2 = D12.14D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.52C2^2wrC2 | 192,621 |
C6.53C22≀C2 = C42⋊8D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 24 | 4 | C6.53C2^2wrC2 | 192,636 |
C6.54C22≀C2 = D12.15D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.54C2^2wrC2 | 192,654 |
C6.55C22≀C2 = D12⋊D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.55C2^2wrC2 | 192,715 |
C6.56C22≀C2 = Dic6⋊D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.56C2^2wrC2 | 192,717 |
C6.57C22≀C2 = D6⋊6SD16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.57C2^2wrC2 | 192,728 |
C6.58C22≀C2 = D6⋊8SD16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.58C2^2wrC2 | 192,729 |
C6.59C22≀C2 = D12⋊7D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.59C2^2wrC2 | 192,731 |
C6.60C22≀C2 = Dic6.16D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.60C2^2wrC2 | 192,732 |
C6.61C22≀C2 = D6⋊5Q16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.61C2^2wrC2 | 192,745 |
C6.62C22≀C2 = D12.17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.62C2^2wrC2 | 192,746 |
C6.63C22≀C2 = D12⋊18D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.63C2^2wrC2 | 192,757 |
C6.64C22≀C2 = D12.38D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.64C2^2wrC2 | 192,760 |
C6.65C22≀C2 = D12.39D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.65C2^2wrC2 | 192,761 |
C6.66C22≀C2 = D12.40D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.66C2^2wrC2 | 192,764 |
C6.67C22≀C2 = C24.29D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.67C2^2wrC2 | 192,779 |
C6.68C22≀C2 = C24.32D6 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.68C2^2wrC2 | 192,782 |
C6.69C22≀C2 = C24.73D6 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.69C2^2wrC2 | 192,769 |
C6.70C22≀C2 = C24.76D6 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.70C2^2wrC2 | 192,772 |
C6.71C22≀C2 = (C2×C6)⋊8D8 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | | C6.71C2^2wrC2 | 192,776 |
C6.72C22≀C2 = (C3×D4).31D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | | C6.72C2^2wrC2 | 192,777 |
C6.73C22≀C2 = C24.31D6 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.73C2^2wrC2 | 192,781 |
C6.74C22≀C2 = (C3×Q8)⋊13D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.74C2^2wrC2 | 192,786 |
C6.75C22≀C2 = (C2×C6)⋊8Q16 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.75C2^2wrC2 | 192,787 |
C6.76C22≀C2 = C22.52(S3×Q8) | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 192 | | C6.76C2^2wrC2 | 192,789 |
C6.77C22≀C2 = (C22×Q8)⋊9S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.77C2^2wrC2 | 192,790 |
C6.78C22≀C2 = (C3×D4)⋊14D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.78C2^2wrC2 | 192,797 |
C6.79C22≀C2 = (C3×D4).32D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 96 | | C6.79C2^2wrC2 | 192,798 |
C6.80C22≀C2 = 2+ 1+4⋊6S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 24 | 8+ | C6.80C2^2wrC2 | 192,800 |
C6.81C22≀C2 = 2+ 1+4.4S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | 8- | C6.81C2^2wrC2 | 192,801 |
C6.82C22≀C2 = 2+ 1+4.5S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | 8- | C6.82C2^2wrC2 | 192,802 |
C6.83C22≀C2 = 2+ 1+4⋊7S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 24 | 8+ | C6.83C2^2wrC2 | 192,803 |
C6.84C22≀C2 = 2- 1+4⋊4S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | 8+ | C6.84C2^2wrC2 | 192,804 |
C6.85C22≀C2 = 2- 1+4.2S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | 8- | C6.85C2^2wrC2 | 192,805 |
C6.86C22≀C2 = C25.4S3 | φ: C22≀C2/C24 → C2 ⊆ Aut C6 | 48 | | C6.86C2^2wrC2 | 192,806 |
C6.87C22≀C2 = C3×C24⋊3C4 | central extension (φ=1) | 48 | | C6.87C2^2wrC2 | 192,812 |
C6.88C22≀C2 = C3×C23.8Q8 | central extension (φ=1) | 96 | | C6.88C2^2wrC2 | 192,818 |
C6.89C22≀C2 = C3×C23.23D4 | central extension (φ=1) | 96 | | C6.89C2^2wrC2 | 192,819 |
C6.90C22≀C2 = C3×C23⋊2D4 | central extension (φ=1) | 96 | | C6.90C2^2wrC2 | 192,825 |
C6.91C22≀C2 = C3×C23⋊Q8 | central extension (φ=1) | 96 | | C6.91C2^2wrC2 | 192,826 |
C6.92C22≀C2 = C3×C23.10D4 | central extension (φ=1) | 96 | | C6.92C2^2wrC2 | 192,827 |
C6.93C22≀C2 = C3×C23.78C23 | central extension (φ=1) | 192 | | C6.93C2^2wrC2 | 192,828 |
C6.94C22≀C2 = C3×C22⋊D8 | central extension (φ=1) | 48 | | C6.94C2^2wrC2 | 192,880 |
C6.95C22≀C2 = C3×Q8⋊D4 | central extension (φ=1) | 96 | | C6.95C2^2wrC2 | 192,881 |
C6.96C22≀C2 = C3×D4⋊D4 | central extension (φ=1) | 96 | | C6.96C2^2wrC2 | 192,882 |
C6.97C22≀C2 = C3×C22⋊SD16 | central extension (φ=1) | 48 | | C6.97C2^2wrC2 | 192,883 |
C6.98C22≀C2 = C3×C22⋊Q16 | central extension (φ=1) | 96 | | C6.98C2^2wrC2 | 192,884 |
C6.99C22≀C2 = C3×D4.7D4 | central extension (φ=1) | 96 | | C6.99C2^2wrC2 | 192,885 |
C6.100C22≀C2 = C3×D4⋊4D4 | central extension (φ=1) | 24 | 4 | C6.100C2^2wrC2 | 192,886 |
C6.101C22≀C2 = C3×D4.8D4 | central extension (φ=1) | 48 | 4 | C6.101C2^2wrC2 | 192,887 |
C6.102C22≀C2 = C3×D4.9D4 | central extension (φ=1) | 48 | 4 | C6.102C2^2wrC2 | 192,888 |
C6.103C22≀C2 = C3×D4.10D4 | central extension (φ=1) | 48 | 4 | C6.103C2^2wrC2 | 192,889 |
C6.104C22≀C2 = C3×C2≀C22 | central extension (φ=1) | 24 | 4 | C6.104C2^2wrC2 | 192,890 |
C6.105C22≀C2 = C3×C23.7D4 | central extension (φ=1) | 48 | 4 | C6.105C2^2wrC2 | 192,891 |